An Advanced Example

In this chapter, we will implement a more advanced app. This app will start by testing the user's understanding of Pro Config, and then redirect to different pages based on the user's score. If the user's score is low, they will be redirected to a Pro Config tutorial chatbot. This advanced example includes concepts of Pro Config we have learned in previous chapters and serves as a great starting point for developers who would prefer building an app with more complicated logic. Here is the config:

{
    "type": "automata",
    "id": "advanced_example_demo",
    "initial": "home_page_state",
    "inputs": {},
    "outputs": {},
    "context": {
      "questions_string": "[{\"question\": \"Which of the following statements is not correct? \\n A. The execution of an Automata starts from the `initial` state. \\n B. An Automata can contain multiple AtomicStates. \\n C. Each AtomicState must define both inputs and outputs. \\n D. We can define transitions in either Automata or AtomicState.\", \"answer\": \"C\", \"explanation\": \"Both inputs and outputs in an AtomicState are optional.\"}, {\"question\": \"You are building an AutomicState, please choose the correct order of execution: \\n A. inputs -> tasks -> outputs -> render \\n B. render -> inputs -> tasks -> outputs. \\n C. tasks -> inputs -> outputs -> render.  \\n D. render -> tasks -> inputs -> outputs\", \"answer\": \"A\", \"explanation\": \"The correct order is `inputs -> tasks -> outputs -> render`. Please refer to `Expressions and Variables`\"}, {\"question\": \"Which of the following expressions is not correct (assume all the variables exist)? \\n A. context.variable \\n B. variable \\n C. variable1 + variable2 \\n D. np.array(variable)\", \"answer\": \"D\", \"explanation\": \"Our expression supports JavaScript grammar.\"}]",
      "questions": "",
      "question_idx": "",
      "chosen_answer": "",
      "correct_answer": "",
      "correct_count": "",
      "memory": "{{[]}}",
      "is_correct": "{{false}}",
      "intro_message": "",
      "tts_widget_id": ""
    },
    "transitions": {
      "go_home": "home_page_state",
      "get_quiz": "quiz_page_state",
      "continue": "continue_state"
    },
    "states": {
      "home_page_state": {
        "inputs": {
          "intro_message": {
            "type": "text",
            "user_input": true,
            "default_value": "Hi, this is your Pro Config Tutorial Bot, how can I assist you today"
          },
          "tts_widget_id": {
            "type": "text",
            "user_input": true,
            "default_value": "1743159010695057408"
          }
        },
        "outputs": {
          "context.intro_message": "{{intro_message}}",
          "context.tts_widget_id": "{{tts_widget_id}}",
          "context.questions": "{{JSON.parse(context.questions_string)}}",
          "context.question_idx": "{{0}}",
          "context.correct_count": "{{0}}"
        },
        "render": {
          "text": "Welcome to this Pro Config tutorial bot. Let's start a quiz!",
          "buttons": [
            {
              "content": "Quiz",
              "description": "get_quiz",
              "on_click": "get_quiz"
            }
          ]
        }
      },
      "quiz_page_state": {
        "outputs": {
          "context.correct_answer": "{{context.questions[context.question_idx]['answer']}}"
        },
        "render": {
          "text": "{{context.question_idx + 1}}. {{context.questions[context.question_idx]['question']}}",
          "buttons": [
            {
              "content": "A.",
              "description": "Choose A.",
              "on_click": {
                "event": "check_answer",
                "payload": {
                  "chosen_answer": "A"
                }
              }
            },
            {
              "content": "B.",
              "description": "Choose B.",
              "on_click": {
                "event": "check_answer",
                "payload": {
                  "chosen_answer": "B"
                }
              }
            },
            {
              "content": "C.",
              "description": "Choose C.",
              "on_click": {
                "event": "check_answer",
                "payload": {
                  "chosen_answer": "C"
                }
              }
            },
            {
              "content": "D.",
              "description": "Choose D.",
              "on_click": {
                "event": "check_answer",
                "payload": {
                  "chosen_answer": "D"
                }
              }
            }
          ]
        },
        "transitions": {
          "check_answer": {
            "target": "analyze_answer_state",
            "target_inputs": {
              "chosen_answer": "{{payload.chosen_answer}}"
            }
          }
        }
      },
      "analyze_answer_state": {
        "inputs": {
          "chosen_answer": {
            "type": "text",
            "user_input": false
          }
        },
        "outputs": {
          "context.chosen_answer": "{{chosen_answer}}",
          "context.is_correct": "{{chosen_answer == context.correct_answer}}"
        },
        "render": {
          "text": "Check answer state."
        },
        "transitions": {
          "ALWAYS": [
            {
              "target": "correct_answer_state",
              "condition": "{{context.is_correct}}"
            },
            {
              "target": "wrong_answer_state",
              "condition": "{{true}}"
            }
          ]
        }
      },
      "correct_answer_state": {
        "outputs": {
          "context.question_idx": "{{(context.question_idx + 1) % context.questions.length}}",
          "context.correct_count": "{{context.correct_count + 1}}"
        },
        "render": {
          "text": "Congratulations! You have chosen the correct answer {{context.correct_answer}}",
          "buttons": [
            {
              "content": "Continue",
              "description": "continue",
              "on_click": "continue"
            }
          ]
        }
      },
      "wrong_answer_state": {
        "outputs": {
          "context.question_idx": "{{(context.question_idx + 1) % context.questions.length}}"
        },
        "render": {
          "text": "Oh No! The chosen answer is {{context.chosen_answer}}, while the correct one is {{context.correct_answer}}.",
          "buttons": [
            {
              "content": "Continue",
              "description": "continue",
              "on_click": "continue"
            }
          ]
        }
      },
      "continue_state": {
        "render": {
          "text": "Click to Next Question"
        },
        "transitions": {
          "ALWAYS": [
            {
              "target": "quiz_page_state",
              "condition": "{{context.question_idx > 0}}"
            },
            {
              "target": "finish_state",
              "condition": "{{context.correct_count == context.questions.length}}"
            },
            {
              "target": "review_state",
              "condition": "{{true}}"
            }
          ]
        }
      },
      "finish_state": {
        "render": {
          "text": "Congratulations! You are now a master of Pro Config!",
          "buttons": [
            {
              "content": "Home",
              "description": "Back to Home",
              "on_click": "go_home"
            }
          ]
        }
      },
      "review_state": {
        "outputs": {
          "context.memory": "{{[]}}"
        },
        "render": {
          "text": "{{context.intro_message}}"
        },
        "transitions": {
          "CHAT": "chat_page_state"
        }
      },
      "chat_page_state": {
        "inputs": {
          "user_message": {
            "type": "IM",
            "user_input": true
          }
        },
        "tasks": [
          {
            "name": "generate_reply",
            "module_type": "AnyWidgetModule",
            "module_config": {
              "widget_id": "1744214024104448000", // GPT-3.5
              "system_prompt": "You are a teacher teaching Pro Config. Pro Config is a powerful tool to build AI native applications. Here are some questions and answers about basic concepts of Pro Config: {{context.questions_string}}",
              "user_prompt": "{{user_message}}",
              "memory": "{{context.memory}}",
              "output_name": "reply"
            }
          },
          {
            "name": "generate_voice",
            "module_type": "AnyWidgetModule",
            "module_config": {
              "widget_id": "{{context.tts_widget_id}}",
              "content": "{{reply}}",
              "output_name": "reply_voice"
            }
          }
        ],
        "outputs": {
          "context.memory": "{{[...context.memory, {'user': user_message}, {'assistant': reply}]}}"
        },
        "render": {
          "text": "{{reply}}",
          "audio": "{{reply_voice}}",
          "buttons": [
            {
              "content": "Home",
              "description": "Click to Go Back to Home.",
              "on_click": "go_home"
            }
          ]
        },
        "transitions": {
          "CHAT": "chat_page_state"
        }
      }
    }
  }

We now elaborate on the above example by first reviewing some learned concepts, and then introducing some advanced features.

Overview of the Entire Pipeline

Here is the pipeline of the application defined by the above config:

  • When the app starts, user will be prompted to input the intro_message and tts_widget_url, which will be passed through the automata and reused later in the chat page.

  • The user is then directed into a quiz page, where they will be answering several questions about the basic concepts of Pro Config.

    • If the user gets all questions correct, the app will end, and a congratulation message will pop up.

    • If the user gets some question wrong, the app will redirect to a chatbot that can interact and answer questions about Pro Config.

Review of Basic Concepts

Inputs, Outputs, and Render

In the above example, we have used two types of inputs text and IM . text inputs prompts the user to input the intro_message and tts_widget_url. IM input is used in the chatbot where user directly send text messages.

The outputs used in the example are mainly for writing some variables to the context and do some basic calculation (such as increasing the question index). For rendering, we have used text, buttons, and audio in this example.

Workflow

We simply use LLM + TTS as the workflow in the chat_page_state ,which has been already discussed in previous chapter. We have fed some basic knowledge of Pro Config to the system_prompt of the LLM, so that the chatbot has it's internal knowledge base to answer questions.

Transitions

The above example includes transitions through buttons (controlled by the on_click properties) and some reserved action names such as CHAT and ALWAYS . It also demonstrates how to perform conditional transitions, which we will discuss later.

Expressions and Variables

We can find some basic use cases of expressions (JavaScript grammar) to initialize some variables and do some basic calculation. We have also demonstrated how to use context to pass variables across different states.

Advanced Features

Conditional Transitions

Please refer to continue_state which determines the state transition based on user's quiz score.

      "transitions": {
        "ALWAYS": [
          {
            "target": "quiz_page_state",
            "condition": "{{context.question_idx > 0}}"
          },
          {
            "target": "finish_state",
            "condition": "{{context.correct_count == context.questions.length}}"
          },
          {
            "target": "review_state",
            "condition": "{{true}}"
          }
        ]
      }

In this example, it will redirect to the quiz_page_state if the question_idx is valid. Otherwise, if the user has answered all the questions correctly, it will jump to the finish_state. If the user get any question wrong, it will jump to the review_state the let the user chat with a Pro Config tutorial bot. The conditions of the transition cases are evaluated sequentially, and the condition in the last case {{true}} is similar to the default keyword in C++ case .

Passing parameters through transitions

To decide whether the user has chosen the correct answer, we need to pass the chosen answer as a parameter during the transition. This can be achieved by:

      "quiz_page_state": {
      ...
        "render": {
          "text": "{{context.question_idx + 1}}. {{context.questions[context.question_idx]['question']}}",
          "buttons": [
            {
              "content": "A.",
              "description": "Choose A.",
              "on_click": {
                "event": "check_answer",
                "payload": {
                  "chosen_answer": "A"
                }
              }
            },
            ...
            {
              "content": "D.",
              "description": "Choose D.",
              "on_click": {
                "event": "check_answer",
                "payload": {
                  "chosen_answer": "D"
                }
              }
            }
          ]
        },
        "transitions": {
          "check_answer": {
            "target": "analyze_answer_state",
            "target_inputs": {
              "chosen_answer": "{{payload.chosen_answer}}"
            }
          }
        }
      },
      "analyze_answer_state": {
        "inputs": {
          "chosen_answer": {
            "type": "text",
            "user_input": false
          }
        },
        ...
      }

In the above snippet, we first define different payloads for the four buttons (A, B, C, D), and pass the chosen answer through the target_inputs of the transition check_answer. The variable chosen_answer can be used in the target state analyze_answer_state later.

More Complicated Expressions

In the above example, we have also shown more complicated expressions such as parse a JSON string to the context.questions, which is useful to initialize structured data. Our expression also supports slicing of a list or a dict, such as

"text": "{{context.question_idx + 1}}. {{context.questions[context.question_idx]['question']}}",

Last updated